Ad:Business Contacts
Ads:Current issue FRUIT PROCESSINGWorld Of Fruits 2024Our technical book Apple Juice TechnologyFRUIT PROCESSING Online Special: Instability of fruit-based beveragesFRUIT PROCESSING Online Special: Don’t give clogs a chanceOrange Juice ChainOur German magazine FLÜSSIGES OBST

An enzyme variant created by engineers and scientists at The University of Texas at Austin can break down environment-throttling plastics that typically take centuries to degrade in just a matter of hours to days.

This discovery, published in Nature, could help solve one of the world’s most pressing environmental problems: what to do with the billions of tons of plastic waste piling up in landfills and polluting our natural lands and water. The enzyme has the potential to supercharge recycling on a large scale that would allow major industries to reduce their environmental impact by recovering and reusing plastics at the molecular level.

“The possibilities are endless across industries to leverage this leading-edge recycling process,” said Hal Alper, professor in the McKetta Department of Chemical Engineering at UT Austin. “Beyond the obvious waste management industry, this also provides corporations from every sector the opportunity to take a lead in recycling their products. Through these more sustainable enzyme approaches, we can begin to envision a true circular plastics economy.”

The project focuses on polyethylene terephthalate (PET), a significant polymer found in most consumer packaging, including cookie containers, soda bottles, fruit and salad packaging, and certain fibers and textiles. It makes up 12 % of all global waste.

The enzyme was able to complete a “circular process” of breaking down the plastic into smaller parts (depolymerization) and then chemically putting it back together (repolymerization). In some cases, these plastics can be fully broken down to monomers in as little as 24 hours.

Researchers at the Cockrell School of Engineering and College of Natural Sciences used a machine learning model to generate novel mutations to a natural enzyme called PETase that allows bacteria to degrade PET plastics. The model predicts which mutations in these enzymes would accomplish the goal of quickly depolymerizing post-consumer waste plastic at low temperatures.

Through this process, which included studying 51 different post-consumer plastic containers, five different polyester fibers and fabrics and water bottles all made from PET, the researchers proved the effectiveness of the enzyme, which they are calling FAST-PETase (functional, active, stable and tolerant PETase).

“This work really demonstrates the power of bringing together different disciplines, from synthetic biology to chemical engineering to artificial intelligence,” said Andrew Ellington, professor in the Center for Systems and Synthetic Biology whose team led the development of the machine learning model.

Recycling is the most obvious way to cut down on plastic waste. But globally, less than 10% of all plastic has been recycled. The most common method for disposing of plastic, besides throwing it in a landfill, is to burn it, which is costly, energy intensive and spews noxious gas into the air. Other alternative industrial processes include very energy-intensive processes of glycolysis, pyrolysis, and/or methanolysis.

Biological solutions take much less energy. Research on enzymes for plastic recycling has advanced during the past 15 years. However, until now, no one had been able to figure out how to make enzymes that could operate efficiently at low temperatures to make them both portable and affordable at large industrial scale. FAST-PETase can perform the process at less than 50 degrees Celsius.

Up next, the team plans to work on scaling up enzyme production to prepare for industrial and environmental application. The researchers have filed a patent application for the technology and are eying several different uses. Cleaning up landfills and greening high waste-producing industries are the most obvious. But another key potential use is environmental remediation. The team is looking at a number of ways to get the enzymes out into the field to clean up polluted sites.

“When considering environmental cleanup applications, you need an enzyme that can work in the environment at ambient temperature. This requirement is where our tech has a huge advantage in the future,” Alper said.

Alper, Ellington, associate professor of chemical engineering Nathaniel Lynd and Hongyuan Lu, a postdoctoral researcher in Alper’s lab, led the research. Raghav Shroff, a former member of Ellington’s lab and now a research scientist at the Houston Methodist Research Institute, created the 3DCNN machine learning model used to engineer the plastic-eating enzyme. Danny Diaz, a current member of Ellington’s lab, adapted the model and created a web platform, MutCompute, to make it available for wider academic use. Other team members include from chemical engineering: Natalie Czarnecki, Congzhi Zhu and Wantae Kim; and from molecular biosciences: Daniel Acosta, Brad Alexander, Hannah O. Cole and Yan Jessie Zhang. The work was funded by ExxonMobil’s research and engineering division as part of an ongoing research agreement with UT Austin.

As might be expected, there are high levels of concern among Asian consumers about the impact COVID-19 is having, both directly on their own lives and also on a global scale. According to Innova’s COVID-19 Consumer Survey (conducted in March 2020), in China, India and Indonesia, personal concerns center on health, personal income and the availability of healthcare and products to buy.

Personal health, and the health of family and friends, tops the list of concerns across all three countries, with impact on personal income/finances ranked as second. Indian consumers were the most concerned. 73 % of Indian consumers say that they were very concerned about their own and that of their family’s/friends’ health. This is compared with 58 % in China and 52 % in Indonesia.

Concerns over more global issues are led by healthcare and financial/economic uncertainty. Healthcare ranks the highest in India, with 79 % of respondents very concerned. Financial/economic uncertainty came out first in China and Indonesia, with 55 % and 68 % of respondents, respectively, saying that they were very concerned. Consumers in all three countries were also concerned about the impact on food and job security.

Changes in behavior driven by the pandemic include more working from home, more social media and online entertainment and even exercising inside the home, with lower levels of leaving the house, visiting cafes/bars and restaurants, travelling for business and pleasure and using public transportation.

Health considerations have become more influential on purchasing decisions, with consumers trying to eat more healthily and consuming products in a bid to boost immunity. These include ingredients such as turmeric in India, chrysanthemum and cordyceps flower in China and royal jelly, ginger and mint in Indonesia. Familiarity, comfort and improving mood are also seen as increasingly important factors for food and beverage choices during the crisis. Health, shelf-life and cost are taking on a greater significance with regard to purchasing decisions, while factors such as flavor and indulgence appear to be declining in importance. Innova Market Insight’s research indicated that the main changes in attitude/behavior in India and China included more cooking/preparing of homemade food, more healthy eating and more eating/drinking products to boost immune health.

Fresh fruit and vegetables and juices and nectars are some of the top categories benefiting from this trend, as consumers look to them as a means of boosting health. At the same time, consumers claimed to be purchasing lower levels of less healthy, indulgent and highly processed options, such as ice cream, pizza and cakes and pastries.

There has also been an acceleration in the growth of online grocery shopping as movements are restricted and physical stores cannot easily be accessed. The rise in grocery apps in China, for example, encompasses developments in supermarkets, dedicated grocery apps and food delivery platforms. Restaurants have been quick to offer home delivery, but many consumers are also willing to order online and go out and pick up takeout. In China, 37 % of consumers claimed to be ordering more restaurant/café food online, while 34 % were picking up takeout food and meals more often.